

Polis Analysis

AI and Its Effects on Academia

November 2025

Section 1: Executive Summary.....	2
Section 2. Literature Review.....	3
Section 3: Methods.....	7
Section 4: Findings.....	9
Section 5 Policy Implications.....	17
Section 6: Conclusion- What does the future hold?.....	20
Bibliography.....	22

Section 1: Executive Summary

Higher academia has undergone a significant transformation due to the emergence of AI technology and large language models. This 180-degree turn in higher education will set in motion major transformations, including new teaching methods and automated study systems. The AI-driven world presents universities with a dilemma: it offers opportunities to enhance knowledge accessibility and accelerate research processes, while also posing risks to critical thinking. The paradox that universities face includes expanding access to knowledge alongside widening educational inequality, the consolidation of power within private entities, and the exploitation of resources.

To explore this significant topic, I interviewed six professors who are scholars and practitioners across public policy, technology, education, and political science. I qualitatively coded their interviews to form 7 major themes. I interviewed Ron Hayduk, Dr. Andres Fortino, Thomas Blaylock, Steven Goss, Domingo Morel, and Cyril Ghosh, and this paper investigates how AI is shaping academia from a theoretical, practical, and futuristic lens. Through the thematic qualitative analysis, these experts do not believe that AI will replace higher education. They argue that AI can be integrated across educational institutions to strengthen the mission of education. However, this integration will involve restructuring academic institutions to shift their focus from churning out and delivering information and knowledge to cultivating meaning-making and enhancing critical thinking through a mix of AI and human knowledge systems. Left unregulated, AI is likely to exacerbate global inequality and undermine democratic capacity, making the mission of institutions more urgent: redefining learning, research, and control.

Thesis: *Higher education will not be adversely affected by AI, but AI's effects will lead to a restructuring of the epistemic purpose of education. Therefore, the purpose of policymaking will be to redesign educational structures to integrate AI without deepening existing socioeconomic inequalities.*

Section 2. Literature Review

Introduction: This paper's literature review draws on works such as *The Empire of AI* by Karen Hao, *A Battle For Your Brain* by Nita A. Farhanay, and *The Metric Society* by Steffen Mau to examine how emerging large-scale AI systems are reshaping knowledge production and academic labor. Works by Neil Selwyn on Education and Technology,

Justin Reich on transforming education, as well as Safiya Umoja Noble's work on how algorithms are oppressing society. The majority of the paper relies on findings from the interviews I conducted with Professors from UC Berkeley, NYU, San Francisco State University, as well as PhD students from Oxford, the University of British Columbia, and the University of Helsinki.

Digital technologies have initiated another paradigm shift. The internet lowered barriers to information distribution, challenged traditional gatekeeping, and enabled decentralized, peer-to-peer knowledge systems (Benkler 2006; Shirky 2008). Early educational technology, such as digital libraries, initially promised democratized access but ultimately reproduced and amplified inequality due to resource asymmetries, platform financing, and credentialing hierarchies (Selwyn 2016; Reich 2020; Noble 2018). The failure of MOOCs to replace universities underscores that access to information alone is not equivalent to access to learning; institutions matter for belonging, evaluation, and legitimacy (Bernardi 2019).

Generative AI represents a unique turning point because it both produces new knowledge and disseminates existing knowledge. Large language models generate original content through operations that resemble human thinking, writing, and argumentation, according to Bender et al. (2021). The long-established learning indicators, including writing, citation, and synthesis, have lost their value because machines can now produce outputs that mimic human thinking. The educational crisis now faces an epistemological challenge, as machines demonstrate the ability to generate thoughts that resemble human intelligence.

The current technological advancements in AI have made it difficult to distinguish between actual knowledge and the ability to create knowledge that appears to be real information. The fundamental institutional problem lies here. AI transforms knowledge production and distribution patterns, which leads to changes in both authority and legitimacy systems. The argument in Karen Hao's **Empire of AI** that "AI is just a land grab all over again. Big Tech likes to collect your data more or less for free ... and then turn it around and sell it back to you as a service," echoes this: by restructuring who produces knowledge and how it circulates, AI shifts legitimacy and authority.

Similarly, as Nita A. Farahany notes in **The Battle for Your Brain**, "Our brains are the last fortress, the last realm of privacy we truly have left, but we are rapidly losing it." The transformation of knowledge institutions is less about a single tool than about changing the conditions of knowledge production, circulation, and legitimization. **The Metric Society** by Steffen Mau "analyzes how contemporary life is increasingly dominated by quantification,

where everything from social standing to personal health is measured and evaluated through metrics like scores, rankings, and ratings.”

Within this framework, when AI produces knowledge-like artifacts, universities as evaluative institutions may lose some of their epistemic monopoly.

2.1 Historical Shifts in Knowledge Production

Knowledge institutions experience fundamental changes through multiple technological advancements, which transform both knowledge producers, distribution networks, and established knowledge formats. The printing press brought about two major changes to society, as it enabled faster text production while simultaneously breaking down religious and political control, enabling widespread literacy, scientific collaboration, and religious reform (Eisenstein 1980; Burke 2000). Mass public schools and modern research universities established standardized methods for knowledge validation, which resulted in the development of professional fields that require credentials (Collins 1979; Freidson 2001).

Digital technologies brought about a new operational framework for knowledge management. The internet created new pathways for information sharing, removing barriers to access while allowing people to exchange knowledge directly with one another (Benkler 2006; Shirky 2008). The initial deployment of MOOCs, digital libraries, and learning management systems created educational opportunities for all students. These systems, however, maintained social inequalities due to their payment requirements and authentication procedures (Selwyn 2016; Reich 2020; Noble 2018). The failure of MOOCs to replace traditional universities suggests that having access to information does not guarantee learning success because educational institutions create feelings of belonging and establish evaluation systems, and provide legitimacy (Bernardi 2019).

Generative AI technology produces knowledge through automated systems that create new content using methods that differ from those used by previous technological systems. Large language models produce original content, demonstrating their ability to reason, write, and construct arguments (Bender et al. 2021). The traditional learning indicators, which included writing, citation, and synthesis, have lost their value because machines can now produce similar work to humans. The educational crisis emerged because machines could perform tasks that were once exclusive to human mental effort.

The current educational crisis stems from AI technology, which makes it difficult to distinguish between actual knowledge and artificial knowledge production. The basic institutional problem exists.

2.2 AI and Epistemic Change: What Counts as Knowledge?

The AI systems GPT-4 and LLaMA operate through statistical language modeling instead of human-like understanding of content (Bender and Koller 2020; Floridi and Chiriatti 2020). The systems generate outputs that demonstrate reasoning abilities through the production of legal arguments, policy evaluations, computational models, and literature reviews.

The inability to see how AI systems operate creates challenges for knowledge assessment because their decision-making mechanisms stay out of sight. AI-generated knowledge emerges from synthetic production instead of retrieval, and it exists as probabilistic information, which lacks methodological foundation and lacks source identification capabilities, and contains social biases from training data (Noble 2018; Eubanks 2017)

The operation of models depends on human intellectual work that occurred before their development. The degradation of models happens because human researchers stop publishing peer-reviewed knowledge, which models require to operate effectively (Shumailov et al. 2023). AI technology makes universities more vital because they need to produce authentic knowledge that serves as the foundation for all other learning.

The transition of knowledge authority from universities to private platforms operated by OpenAI, Anthropic, Tencent, and Google threatens to eliminate universities' exclusive control of knowledge validation. Zuboff (2019) describes the digital corporate model, which turns information systems into surveillance platforms that create financial gains. AI's ability to produce knowledge remains unclear, and in that scenario, it is important to determine the conditions for knowledge and the ethical concerns surrounding it.

The main proxy for cognitive abilities has been writing since the beginning of time. Academic products, including essays, dissertations, and peer-reviewed articles, serve as evidence of intellectual processes and scholarly achievements. The cognitive indicator status of writing faces obstacles because of Generative AI technology. Educational theorists have conducted research that demonstrates that assessment methods often evaluate student results rather than their actual comprehension of course material (Bloom 1956; Shavelson 2010), and generative AI models make this performance-understanding difference more pronounced. Selwyn (2022) states that students who create professional work without understanding basic concepts will not meet the requirements of standard assessment criteria.

The fundamental transformation of education systems, which Karen Hao explains in *Empire of AI*, creates an unprecedented crisis. AI systems operate as massive production facilities that generate knowledge-like content at industrial levels, thus threatening to eliminate all differences between authentic mental work and artificial text generation. The automatic production of professional-quality arguments by AI systems renders student thinking assessment through writing an unreliable method. The main threat to institutions, according to Hao, stems from their dependence on assessment tools, which private corporations now control through their automated systems.

The situation becomes more complex because Farahany's *The Battle for Your Brain* demonstrates how modern technologies create challenges to identify the point where human-generated content stops and extracted information starts. The assessment of AI systems for cognitive work mediation and simulation requires new evaluation methods because current learning assessment tools fail to monitor student mental processing activities. The present ethical dilemma requires a choice between continuing assessment tests to validate human mental abilities.

Educational institutions need to develop new methods that prove student learning through authentic assessment methods. Educational programs now utilise oral defenses, dialogic examination, experiential work, project-based learning, community-based assignments, reflective writing, and process portfolios to show student reasoning development. Educational institutions should implement AI-based assignment tracking systems instead of prohibiting this practice. Universities need to develop assessment methods that evaluate student reasoning abilities instead of focusing on final products according to post-cognitive educational approaches that emphasize learning processes over end results (Langer 1997; Dawson 2023).

Learning environments need to support AI tools, but institutions must create guidelines that prevent AI from doing work that requires human intellectual abilities. The evaluation systems based on traditional proxies experience collapse because they lack the ability to distinguish between student thinking and performance. The inability of conventional assessment methods allows developers to build new evaluation systems that assess fundamental thinking competencies.

Section 3: Methods

3.1 Research Design

The research design of my study employs qualitative semi-structured interviews, as well as a literature review, to explore how political science and policy experts, education professionals, and technology specialists view the transformation of higher education institutions by AI. This method suits the purpose of studying how people create meaning because it does not require behavioral data measurement (Maxwell 2013; Weiss 1994). The ongoing development of AI institutional effects makes expert interviews the best method to detect new narratives and interpretive frameworks, and value-based concerns that have not appeared in official policies or statistical data.

The research examines how experts view the educational transformations caused by AI technology, along with their reasons and effects on academic management and social equality. Semi-structured interviews enabled me to ask pre-determined questions and bring forth fresh concepts, which were vital for completing this research.

3.2 Participants

I conducted six expert interviews through purposeful selection, and the participants demonstrated their academic knowledge and their work experience with AI in educational and policy settings. The participants maintain their positions in academic institutions and research facilities while actively participating in educational governance, public policy, and technological discussions.

The interviewees were from various ideological backgrounds and academic disciplines across the USA, Canada, and the UK, which gave the study a comparative advantage.

3.3 Data Collection

Data collection involved scheduled interviews with participants over 3 months. I prepared an interview questionnaire that was similar across all interviews, lasting 35 to 60 minutes. Once all the interviews were done, they were transcribed and qualitatively coded for analysis.

The research questions investigated five primary research topics -

1. AI in the classroom
2. Research and PhD training
3. Institutional governance and policy
4. Inequality and global impacts
5. Knowledge production and epistemic legitimacy

The research employed standardized interview techniques, which allowed participants to bring up any extra subjects they wanted to discuss.

3.4 Analytical Approach

The research analysis combined deductive and inductive thematic coding methods as described by Fereday and Muir-Cochrane (2006). Post coding, I developed seven general themes:

1. *AI's Role in Academia*
2. *Ethics and AI*
3. *AI's Impact on Global South / Equity*
4. *AI's Influence on PhD Studies*
5. *AI Policy in Academia*
6. *AI in the Workforce & Startups*
7. *Future of Academia & Democratizing Knowledge*

I further refined my coding through multiple iterative cycles, which led to the emergence of new subcategories: epistemic authority, assessment collapse, platform power, and cognitive ownership, alongside the overarching theme of institutional contraction. To identify common patterns across participant responses, I developed a comparative codebook that organized these categories systematically. This codebook then served as the basis for deeper analysis and the formulation of my final recommendations.

3.5 Researcher Positionality

As the researcher, I hold a dual role: I am both an academic examining AI in education and a practitioner working within public policy and applied technology. This positionality informs my theoretical commitments—particularly those concerning equity, governance, and institutional change—as well as my interpretation of participants' perspectives. While this background provides important contextual insight, it also introduces normative assumptions. To mitigate this, I relied on direct quotations, timestamped excerpts, and cross-interview triangulation to clearly differentiate participants' viewpoints from my own analytical lens.

This study does not seek to present a neutral or detached account of AI's effects; rather, it aims to illuminate the interpretive frameworks through which academic actors make sense of AI as a transformative force.

3.6 Limitations

This study has several limitations. The sample is small and expert-focused, emphasizing depth and conceptual richness over broad generalizability. The data also reflects attitudes at a particular moment in the evolution of AI, and these views may shift as the technology continues to develop. Additionally, the findings are interpretive; they capture how scholars understand and articulate the challenges posed by AI, but not how institutions will definitively act in

response. These limitations are consistent with the goals of qualitative inquiry, which seeks insight into meaning-making and conceptual patterns rather than causal prediction.

Section 4: Findings

Section	Lead Interviewees	Focus
4.1 AI's Role in Academia	Ghosh, Fortino, Blaylock	Integration, pedagogy, purpose
4.2 Ethics & AI	Morel, Hayduk, Blaylock	Bias, environment, governance
4.3 AI & Inequality / Global South	Morel, Hayduk, Blaylock	Structural inequity
4.4 AI & PhD Research	Goss, Fortino, Ghosh	Meta-research, invention
4.5 AI Policy & Governance	Morel, Hayduk, Ghosh	Commissions, national policy
4.6 AI in Workforce & Startups	Blaylock, Fortino	Disrupted professions
4.7 Future of Academia	All six	Institutional survival, legitimacy

4.1 AI's Role In Academia

All six interviewees affirmed a positive role of AI in academia. They pointed out that it is not a threat to what education aims to produce, but it is certainly a forebearer of change in the way things are taught and evaluated. Rather than displacing learning, AI alters the cognitive landscape of academia through “cognitive offloading”: automating routine tasks while elevating the importance of interpretation, judgment, and ethical responsibility.

Interviewees consistently rejected the narrative that generative AI will replace human cognition. Instead, they described AI as a system that accelerates low-level academic work — drafting, summarizing, synthesizing, and preliminary analysis, thereby shifting the value of human expertise. As Dr. Fortino explained, AI automates “things people hate to do,” yet this does not diminish the role of scholars. “It’s still your meaning-making that matters,” he emphasized, underscoring that human interpretation remains central even when AI handles foundational tasks.

Thom Blaylock similarly noted that AI is restructuring academic workflows rather than eliminating them. He observed that AI performs “60% of the grind work,” which changes—not reduces—the role of students and early-career researchers. The implication is that academia

must pivot from training individuals to perform routine cognitive tasks toward cultivating higher-order skills, such as inquiry, contextual reasoning, ethical discernment, and systems thinking.

Participants also highlighted how AI destabilizes conventional academic boundaries. The automation of drafting and summarizing blurs the distinction between original and synthetic work, complicating existing norms around authorship and integrity. Blaylock warned that universities risk irrelevance if they assume traditional policy tools. "We will see a contraction in higher education," he cautioned, "if institutions keep preparing people for jobs that no longer exist."

Yet these concerns do not reflect pessimism about academia's future; instead, they illuminate the need for a new epistemic orientation. Participants described AI as expanding intellectual possibilities while demanding stronger governance around AI's interpretation and ethical use. As Fortino noted, AI can accelerate thinking, but determining "what matters" remains an inherently human task. The interviews suggest that AI plays a transformative role in academia, compelling universities to vouch for AI literacy and to challenge age-old academic norms.

4.2 Ethics and AI in Academia

The main ethical concerns about AI stem from its ability to facilitate plagiarism and cheating. The moral domain encompasses three main areas that extend beyond plagiarism to include training data biases, educational privatization, and student work commercialization. The professors I interviewed identified two main categories of issues regarding AI use in education: fundamental plagiarism problems and significant critical risks that affect democratic learning systems, institutional autonomy, and student privacy.

Ron Hayduk explains AI ethics through the lens of digital capitalism, which has led to the privatization of public goods. The author describes how AI technology begins as a tool for freedom before it develops into a discriminatory system that generates financial benefits. The platform capitalism and algorithmic exploitation research by Zuboff (2019) and Noble (2018) demonstrates how new technologies increase social inequality due to a lack of proper governance. The academic field faces the risk of becoming dependent on corporate-developed tools that run counter to public education values, as their business models contradict democratic principles and social equality. Educational institutions now face ethical scrutiny regarding their use of AI systems for operational management rather than student conduct.

Domingo Morel presents a global perspective by showing how the European Union handles AI regulation differently from the United States. The United States operates as a "wild west" for AI development because it lacks effective policy oversight, which allows biased training data and surveillance applications to harm society before anyone takes action. The author supports the concept of anticipatory governance, which demands early regulatory action to stop future social injustices from occurring. Morel suggests that academic AI governance requires two types of oversight: institutional policies and federal, state, and local government oversight through dedicated ethics commissions to track AI impacts.

The discussion about ethics occurred during a teaching methods discussion. Thom Blaylock supports ethical teaching through active engagement with AI rather than a complete prohibition on the technology. The professor recommends that AI policy development for ethics should teach students about AI systems while providing them with opportunities to experiment with these technologies. The method allows higher education institutions to surpass basic AI ethics compliance through rule-based systems as it promotes student and faculty agency, which matches current research on AI literacy in higher education (Dawson 2023; Selwyn 2022).

Dr. Fortino explains applied ethics through his statement that people should only use AI tools when they can justify their decisions. The method shifts ethical standards from using tools for control to individual professional ethics standards, which replace paternalistic approaches. Researchers who work with ethical AI must disclose their methods and assistance while showing their knowledge of the technology. The approach follows scientific reproducibility standards and responsible innovation principles (Floridi and Chiriaci 2020).

The research participants established that AI ethics requires a complete system-based solution that addresses three core domains. The two fundamental elements of epistemic integrity consist of knowledge production and verification, and knowledge interpretation and fair distribution between social groups. The system of governance defines how decisions are made through its established procedures for decision-making and determines which organizations hold decision-making authority. Institutions need to defend truth and public benefit because they serve as protectors of these essential values.

The main challenge in AI ethics is to prevent AI from developing educational systems that threaten democratic knowledge systems. Protecting society requires academia to develop proactive policies that go beyond simple student monitoring rules.

4.3. AI and Inequality: Global and Structural Divides

The interviews show that, in practice, artificial intelligence systems will not achieve educational equality for students. The participants in this study agree that AI technology will create new social gaps between institutions with resources and those that do not, between nations with technological capabilities and those without them, and between students who understand AI and those who only use AI tools.

Domingo Morel draws a direct historical parallel: “The internet didn’t democratize knowledge... my hunch tells me AI will continue on that same path.” The implementation of digital liberation tools created social inequalities because various groups faced challenges in obtaining financial support, institutional backing, and network access (Noble 2018; Eubanks 2017). The new educational resources offer worldwide access to learning, but their effectiveness will depend on institutions with sufficient funding to implement them effectively.

Ron Hayduk similarly argues that AI will “exacerbate inequalities between first-world and developing countries, and within developed countries.” The compute divide concept holds that

AI's systematic power depends on three fundamental elements: data access, processing capacity, and financial backing (Ahmed and Wahed 2024; Taylor 2023). The implementation of AI technology will create expanding gaps between different social groups throughout the world, which will in turn affect educational opportunities and scientific research, alongside employment and political influence.

Thom Blaylock contributes an institutional perspective, warning that the higher education sector itself may contract: "We will see a contraction in higher education... same equity issues." The same social equity problems that affect higher education today will lead to a decrease in its overall size. Elite institutions that implement AI for research and teaching will establish a two-tiered educational system, allowing wealthy universities to produce knowledge while forcing underfunded institutions to use AI-generated educational materials.

The interview participants highlighted their worries about how AI systems generate cultural and knowledge-based inequalities. The training data for AI models consists primarily of Western content written in English, leading AI systems to reflect dominant cultural perspectives rather than diverse knowledge systems. The implementation of AI technology without proper monitoring systems will create new methods of knowledge extraction that replicate colonial data extraction practices that developing nations in the Global South experienced (Couldry & Mejias, 2019).

The educational system faces equity issues due to its current teaching methods. The academic sector will achieve positive results through AI system management because students who develop critical thinking skills and receive institutional backing will benefit from this technology. The current educational system discriminates against certain student groups because AI tools performing basic educational tasks will make their learning experience more challenging.

The research shows that AI technology does not create new social inequalities, but rather makes existing ones more visible. Morel and Hayduk show that infrastructure systems contain built-in inequality rather than technology being the source of this problem. AI will convert knowledge into a controlled resource, which only those with access to capital, computational power, and institutional authority can manage, unless public bodies create conditions for democratic access to knowledge.

The current discussion focuses on whether AI technology can achieve knowledge democratization, but institutions and governments must establish the necessary conditions to achieve this goal.

4.4 AI and PhD Research: Knowledge Production, Meta-Work, and Epistemic Purpose

The research participants strongly disagreed with the statement that AI technology will make doctoral education and academic research obsolete. The participants explained that AI technology enables research transformation by directing investigations, generating new

questions, and confirming acquired knowledge. Given this view, PhD programs should now focus on knowledge system management, combining human experts with artificial intelligence systems. This mix of both human and machine is a future that higher academia is set to confront in the next couple of years.

Dr. Fortino articulates this shift as an evolution, not a displacement: “We’re still going to need PhDs... the training will be in deciding what to investigate next.” The future educational focus for PhD students will shift from producing written work to selecting research topics. AI technology performs faster data cleaning, summarization, and coding tasks, but human experts need to decide research directions, create methods, interpret results, and understand real-world situations.

Professor Goss approaches the issue epistemologically. For him, the value of doctoral research lies not in its outputs but in its orientation toward inquiry: “AI only has the potential for us to understand better the type of questions we need to start asking.” According to him, the core value of doctoral research is to direct research investigations rather than produce specific outcomes. Therefore, AI technology enables researchers to explore new questions, which leads to a more nuanced assessment of problems.

Rather than replacing researchers, AI expands the horizon of possible questions, enabling scholars to interrogate more complex problems. The system generates information but cannot create meaningful interpretations, and Goss cautions that AI cannot supply the normative or theoretical frameworks necessary to interpret knowledge; it can produce information, but not meaning.

Professor Cyril Ghosh reinforces that knowledge discovery through invention cannot be reduced to simple text generation. His research on writing functions for critical thinking assessment investigates how research education programs focus on text production instead of intellectual development. The current research supports his view that AI functions as an idea generation tool instead of performing epistemic work (Bender et al. 2021; Shumailov et al. 2023).

The research participants agreed that AI usage exceeding acceptable levels would block knowledge from progressing. The automated research process leads to model collapse because AI systems train on artificial data instead of human knowledge, according to Shumailov et al. (2023). Human researchers function as knowledge foundation guardians within this system. AI systems lose their functionality when new human-generated knowledge fails to appear.

The research indicates that PhD education needs educators to use new teaching methods. The new educational approach should include three essential elements, which are: Students need to work together with others from different fields and engage with their communities. Students need to learn how to use technical equipment while they develop their ability to use interpretive methods. They need to develop skills for ethical data management, bias control, model development, and knowledge construction awareness.

The future value of a PhD degree will emerge from its capacity to direct research projects instead of functioning as an information repository. AI technology reduces knowledge production costs, which leads organizations to focus on human expertise for research guidance, result interpretation, and control maintenance. AI technology enables doctoral research to achieve its essential goals while maintaining the essential value of these objectives.

4.6 AI in Workplaces and Startups: Implications for Academic Value and Labor

The coding insights for this theme illustrate a restructuring of the skill hierarchy in the AI-mediated economy:

Skill Tier	Pre-AI Value	Post-AI Value	Impact on Degrees
Routine cognitive work (summaries, memos, briefs)	High	Low	Risk of degree devaluation; tasks increasingly automated
Analytical oversight & interpretation	Medium	High	Research and interpretive training gain significance
Strategic direction, ethics, and governance	High	Very High	Universities reclaim civic purpose and social authority

The public discussion about artificial intelligence (AI) presents it as a danger to academic honesty and intellectual standards. The interview participants showed that AI creates an extensive transformation that affects employment markets and forces educational institutions to demonstrate their worth to society. The adoption of AI technology creates new learning approaches for students, which simultaneously reshapes the importance of different skills and thus transforms the academic worth of university education and the link between academic and professional and social mobility.

Thom Blaylock explains that universities are under strain not because AI replaces learning, but because it reorganizes industries that have historically absorbed graduates. Fields such as law, consulting, finance, design, and research are rapidly adopting AI tools to automate the routine, entry-level work once performed by junior employees. As he notes, “You don’t need as many junior people doing the grind work when AI does 60% of it.” The result is a reduced demand for degree holders whose skills are procedural rather than interpretive or strategic.

Dr. Fortino builds on this observation, emphasizing that AI automates “things people hate to do”—administrative writing, summarization, and preliminary analysis—yet insists that this does not diminish human expertise. Rather, “It’s still your meaning-making that matters.” AI accelerates low-level cognitive tasks but simultaneously amplifies the need for workers who can direct systems, interpret results, and assume ethical responsibility for automated decisions. This

aligns with economic research predicting that AI will complement high-level reasoning and leadership roles while eroding mid-tier cognitive labor (Autor, 2022; Acemoglu & Johnson, 2023).

4.7 The Future of Academia in an AI World

The interview participants confirmed that AI technology will not replace academia because it will force educational institutions to evaluate their fundamental values, social role, and academic power structures. Universities must test the implementation of AI technology due to their current financial struggles and enrollment declines, public doubts, and competition from alternative certification programs.

Thom Blaylock characterizes this moment as a structural reckoning: “We will see a contraction in higher education... same equity issues.” The implementation of AI reveals existing social gaps between institutions, according to his perspective, instead of creating new social divisions. Institutions with strong resources, research capabilities, and worldwide recognition will succeed, while underfunded public universities, together with tuition-based private colleges, will become more susceptible to failure. The current market-driven changes in higher education, according to Marginson (2016) and Newfield (2018), will lead to the concentration of prestige at elite institutions while regional institutions lose their academic value.

Ron Hayduk explains how the current threats to higher education will intensify through AI implementation. The financial crisis in higher education represents only one aspect of the problem because the situation involves political elements. The public sector depends on universities to develop citizens, generate knowledge, and facilitate public dialogue. The transfer of knowledge authority to private platforms through AI technology will result in diminished democratic capabilities. The educational sector stands as a fundamental element that supports democratic infrastructure according to this perspective.

Other interviewees were more optimistic. Domingo Morel envisions a potential shift back toward community-building as technology makes individualized learning more accessible: “AI may free universities to focus on collective intellectual spaces rather than content delivery.” This perspective resonates with contemporary arguments that higher education’s core values lie in public scholarship, human connection, and civic formation rather than in information transfer (Reich 2020; Biesta 2013).

According to Professor Ghosh and Dr. Fortino, universities will survive because skills like critical thinking, interpretation, and ethical judgment cannot be automated without societal cost.

Professor Goss situates the future of academia in epistemology. AI, he argues, “changes how we ask questions and how we build knowledge.” AI technology enables us to develop new knowledge through sophisticated methods that have revolutionized our comprehension of knowledge generation. Academic inquiry, evidence-based discussions, and meaningful debates need protection in future universities because these activities must stay free from artificial

intelligence model influence. According to his perspective, academia functions as the protective body that defends intelligence foundations from complete destruction.

Taken together, these perspectives point towards three possible futures:

Scenario	Role of AI	Role of Universities	Outcome
Automation Paradigm	AI replaces human learning	Institutions fail to adapt	Decline and consolidation
Coexistence Paradigm	AI augments learning	Universities retain a credentialing function	Inequality deepens
Stewardship Paradigm	AI accelerates inquiry	Universities govern meaning, ethics, and truth	Strengthened civic institutions

The participants advocate for the third scenario: universities as stewards of democratic knowledge ecosystems. In this future, academia's survival depends on its ability to articulate a mission beyond content production. This future depends on ethical responsibility, judgment, as well as governance of knowledge institutions. In this Stewardship Paradigm, AI does not end higher education, but it forces people in academia to redefine their purpose.

Section 5 Policy Implications

Artificial intelligence places higher education at a rare inflection point. Universities must not only devise governance structures for a rapidly evolving technology, but also re-examine their own internal systems in response to AI's influence on learning, knowledge production, and inequality. Although interviewees vary in how disruptive they believe these changes will be, all six agree on one core insight: traditional policy levers, including plagiarism rules, academic integrity codes, and faculty discretion, are no longer sufficient to shape the educational landscape AI is creating. Reforms that reach beyond classroom-level regulation are required and must extend into institutional, national, and international policy domains.

5.1 Institutional-Level Policy: Redesigning Learning, Assessment, and Internal Governance Systems

Academic institutions need to develop new policies that define educational objectives instead of enforcing AI restrictions, according to interview participants. The transition from writing as proof of understanding to new assessment methods requires epistemic transformation, according to Ghosh. Educational institutions should establish requirements for students to demonstrate their understanding and show process accountability and reasoning skills, rather than banning AI from their coursework. The new assessment methods, which focus on oral defense, collaborative work, iterative portfolios, and metacognitive reflection, align with current research about post-AI assessment (Dawson 2023; Selwyn 2022).

The ethical academic policy, according to Dr Fortino, should enable students to use AI for their work, provided they demonstrate understanding of their output. The scientific community accepts AI-assisted discovery but demands methodological transparency through explainable AI principles that match broader governance standards (Floridi and Chiriatti 2020).

The implementation of institutional policies should focus on three main objectives.

1. The evaluation system needs to assess student' thinking abilities instead of their writing skills.
2. The use of AI in student work should be disclosed instead of being completely banned.
3. The training of faculty members about AI should occur to minimize their competence differences.

The curriculum design should include AI as an integral component instead of treating it as an outside exception. The establishment of AI ethics boards at institutions should mirror the structure of IRBs. The reforms establish AI as a learning catalyst that forces educational institutions to define their core purpose.

5.2 National-Level Policy: Funding, Infrastructure, and Democratic Accountability

The political economy of AI in education requires a national policy to be established because institutional reforms only affect educational methods. The absence of regulation will lead AI to follow the same path as the internet by creating an oligopolistic system, which will increase social inequalities, according to Zuboff (2019) and Noble (2018). The current state-by-state and university-by-university approach to AI regulation produces inconsistent results. Professor Hayduk supports a unified national policy that includes funding support, standardized rules, and democratic oversight.

In light of the aforementioned argument, the following national interventions need to be implemented.

- The government should allocate funds to develop AI literacy programs, build research facilities, and train faculty members.
- The government should establish rules to control corporate data management practices and model transparency requirements.
- The system needs to protect students from algorithmic discrimination, which affects their college entry, job selection, and funding eligibility.
- The government should create financial incentives that stop public educational institutions from using AI as a substitute for their existing systems.
- The establishment of national academic integrity standards should include AI-based assessment methods instead of banning AI from educational use.
- The public needs to govern AI as a shared knowledge system instead of letting market forces control its development (Agré 1997; Couldry and Mejias 2019).

5.3 Global-Level Policy: Establishing a Framework to Stop Knowledge Disparities Between Nations

Multiple interview participants expressed concerns that AI technology will create new educational gaps between nations because it will control the distribution of knowledge. Morel connects the current situation to previous digital inequalities, while Blaylock explains how private companies from the United States and China will gain control over knowledge distribution. The current academic field studies data colonialism and infrastructural imperialism through research (Couldry and Mejias 2019; Taylor 2023).

The following international policies need to be established:

- The development of international standards for AI education through UNESCO requires cross-border data management systems and training dataset governance.
- AI models should operate as public resources that provide worldwide accessibility.
- Research institutions across different regions should work together through international partnerships.
- The Global South needs access to computer resources through financial support.

- The government should provide financial support to developing nations for their technological advancement.
- The lack of international governance will create knowledge extraction systems that use Global South labor and data to generate economic and intellectual value for Global North nations. Universities exist to serve two main groups of people who need knowledge equity: their local community and people worldwide who require fair access to knowledge systems.

5.4 Universities need to evolve into knowledge stewards who validate expertise instead of content producers.

The interviews reveal that universities need to evolve into expertise validation and knowledge stewardship roles because machines now generate large amounts of information. The epistemological transformation of AI requires human oversight to protect meaning and truth, according to Goss. The university needs to develop citizens who can analyze information effectively during the post-truth era, according to Hayduk. The future requires PhD holders to determine which research questions hold value instead of performing basic research tasks, according to Fortino. Universities need policy support to maintain their role as:

1. Public epistemic institutions
2. Democratic knowledge infrastructure
3. Governing bodies of meaning and truth

Academic institutions should focus on understanding how AI systems affect society rather than competing with them.

Level	Key Actions	Underlying Goal
Institution	Redesign assessment, disclosure rules, and AI literacy	Protect learning integrity
National	Regulation, funding, accountability	Prevent inequality + corporate capture
Global	Multilateral governance, open-source access	Prevent knowledge colonialism
Epistemic	Reframe the purpose of universities	Preserve human meaning + inquiry

Section 6: Conclusion- What does the future hold?

What is the purpose of knowledge, and who has the authority to create, validate, and govern it? Artificial intelligence forces higher education to confront this question, which goes back to the history of why these institutions were created in the first place. The dichotomy of the results of this research study highlights that higher academia will remain intact, but AI will also destabilize its structure. My research reveals that the epistemic shift in the mission of universities needs to be defined in a way that not only keeps up with the ongoing AI revolution but also includes AI literacy in its mission. Rather than serving primarily as sites of content mastery or credentialing, universities should curate, interpret, and govern the conditions under which knowledge is produced.

Despite fears that generative AI will automate learning, writing, or research, the participants emphasize that the real transformation lies elsewhere. AI reconfigures labor markets, reshapes skill hierarchies, and alters public expectations of expertise. These pressures do not eliminate the need for higher education—they redefine what counts as valuable within it. As AI takes over routine cognitive tasks, the comparative advantage of universities increasingly lies in cultivating judgment, ethical reasoning, interpretive depth, and the ability to govern complex systems. These are not technical capacities but civic ones.

Yet this restructuring also carries risks. Without intentional policy intervention, AI could exacerbate the very inequalities higher education claims to remedy. As the findings show, AI-enabled entrepreneurship, automation of entry-level work, and uneven access to digital literacy threaten to widen socioeconomic divides. The challenge for policymakers, therefore, is not to protect universities from AI, but to redesign institutional structures so that AI's benefits do not accrue solely to those already advantaged.

Universities need to determine their core mission because AI technology requires them to demonstrate their continued worth to particular segments of society. The future of higher education depends on institutions demonstrating their educational purpose through human development for intelligent world governance and policy-makers establishing these educational goals.

The main finding of this research emerges from these observations, which show AI will transform higher education through its impact on knowledge functions. Universities will endure through their ability to perform tasks that AI systems cannot handle, including meaning creation, ethical leadership, social network development, and defense of intellectual freedom. The public good requires policymakers to create policies that support the transition process by building a stronger unified system. Public policymakers must take three essential steps to support the public good by creating AI literacy programs, setting rules for algorithmic systems, ensuring technology access for all, and building governance frameworks that advance technology while protecting social equity.

The research data show that three essential findings exist for all participants.

1. The AI crisis emerges from knowledge-related issues instead of technological system failures. Universities should adopt new assessment methods that evaluate students' abilities to reason and interpret information, work together, think critically, and make ethical decisions because these skills remain essential for educational value. AI systems show their writing automation capabilities to prove that writing abilities do not represent intellectual capacity and reveal existing problems with academic evaluation systems.
2. The implementation of AI technology creates new social inequalities because it transfers knowledge control to private business platforms. Public governance has failed to stop AI from becoming controlled by private entities, which has led to unequal access to tools, expertise, and computing power through the evolution of the internet. The uncontrolled development of AI technology will make elite institutions more powerful, but it will also lead to the collapse of weak institutions across worldwide and national frameworks. Universities need to fulfill two vital roles because they operate as educational institutions and democratic bodies that defend knowledge from private ownership.
3. The future of universities depends on their ability to function as institutions that interpret knowledge, maintain ethical standards, and perform civic duties. Human involvement through collective assessment becomes necessary for knowledge evaluation because AI prediction systems cannot determine the truth. Research activities remain essential because AI models require human investigation to maintain their knowledge base and prevent the generation of duplicate previous data.

The research findings further indicate that students and professors alike need to master AI literacy. This includes creating new learning methods that teach students to work with and evaluate AI systems rather than focusing solely on performance and subsequent achievement. AI operations need to remain under public oversight because they constitute a collective intellectual asset that should not be turned into proprietary knowledge management systems. Universities need to reestablish their position as democratic centers of knowledge creation that harness collective intellectual effort to discover truth rather than relying on corporate algorithmic production.

Bibliography:

I. Historical & Sociological Foundations of Knowledge Institutions

- Bernardi, G. (2019). Why MOOCs didn't fix higher education. Inside Higher Ed. <https://www.insidehighered.com/digital-learning/article/2019/01/16/study-offers-data-show-moocs-didnt-achieve-their-goals>
- Burke, P. (2000). A social history of knowledge: From Gutenberg to Diderot. Polity Press. https://www.politybooks.com/bookdetail?book_slug=a-social-history-of-knowledge-from-gutenberg-to-diderot--9780745624859
- Collins, R. (1979). The credential society: A historical sociology of education and stratification. Academic Press. <https://www.routledge.com/The-Credential-Society/Collins/p/book/9780121813406>
- Eisenstein, E. (1980). The printing press as an agent of change. Cambridge University Press. <https://doi.org/10.1017/CBO9781107049963>
- Freidson, E. (2001). Professionalism: The third logic. University of Chicago Press. <https://press.uchicago.edu/ucp/books/book/chicago/P/b03633933.html>
- Smith, M. D. (2023). The abundant university: Remaking higher education for a digital world. MIT Press. <https://mitpress.mit.edu/9780262048425/the-abundant-university/>
- Reimagining Innovation in Education and Social Science. (2021). <https://library.oapen.org/bitstream/id/ec76447a-acd1-44c4-8c59-7f5bbc9880c4/978100911336.pdf>

II. Digital Technologies, Platforms, and Inequality

- Benkler, Y. (2006). The wealth of networks: How social production transforms markets and freedom. Yale University Press. <https://yalebooks.yale.edu/book/9780300125771/the-wealth-of-networks/>
- Shirky, C. (2008). Here comes everybody: The power of organizing without organizations. Penguin. <https://www.penguinrandomhouse.com/books/171028/here-comes-everybody-by-clay-shirky/>
- Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press. <https://nyupress.org/9781479837243/algorithms-of-oppression/>
- Reich, J. (2020). Failure to disrupt: Why technology alone can't transform education. Harvard University Press. <https://www.hup.harvard.edu/books/9780674089044>
- Selwyn, N. (2016). Education and technology: Key issues and debates. Bloomsbury. <https://www.bloomsbury.com/us/education-and-technology-9781474235921/>
- Eubanks, V. (2017). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin's Press. <https://us.macmillan.com/books/9781250074317/automatinginequality>
- Ganelin, D. (2019). Differences in online course usage and IP geolocation bias by local economic profile. arXiv preprint. <https://arxiv.org/abs/1907.03834>
- Harju, M., Leppänen, T., & Virtanen, I. (2018). Interaction and student dropout in massive open online courses. arXiv preprint. <https://arxiv.org/abs/1810.08043>

- OECD. (2023). Digital equity and inclusion in education.
<https://one.oecd.org/document/EDU/WKP%282023%2914/en/pdf>

III. AI, Epistemic Change & Knowledge Production

- Bender, E. M., Gebru, T., McMillan-Major, A., & Mitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? FAccT Proceedings.

Link: <https://doi.org/10.1145/3442188.3445922>

- Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On meaning, form, and understanding in the age of data. ACL Proceedings.
- <https://aclanthology.org/2020.acl-main.463/>
- Chiriatti, M., & Floridi, L. (2020). GPT-3: Its nature, scope, limits, and consequences. *Minds and Machines*, 30, 681–694.
<https://doi.org/10.1007/s11023-020-09548-1>
- Hao, K. (2024). Empire of AI: Dreams and nightmares inside the secretive world of OpenAI.<https://www.hachettebookgroup.com/titles/karen-hao/empire-of-ai/9780306831300/>
- Zuboff, S. (2019). The age of surveillance capitalism. *PublicAffairs*.
<https://www.publicaffairsbooks.com/titles/shoshana-zuboff/the-age-of-surveillance-capitalism/9781610395694/>
- Shumailov, I., et al. (2023). The curse of recursion: Training on generated data makes models forget. arXiv preprint.<https://arxiv.org/abs/2305.17493>
- Nyaaba, M., Wright, A., & Choi, G. L. (2024). Generative AI and digital neocolonialism in global education: Towards an equitable framework. arXiv preprint.
<https://arxiv.org/abs/2406.02966>
- Modén, M. U., Ponti, M., Lundin, J., & Tallvid, M. (2023). When fairness is an abstraction: - - - Equity and AI in Swedish compulsory education. arXiv preprint.<https://arxiv.org/abs/2311.01838>
- Yan, L., Sha, L., Zhao, L., & Li, Y. (2023). Practical and ethical challenges of large language models in education: A systematic scoping review. arXiv preprint.
<https://arxiv.org/abs/2303.13379>

IV. Cognitive Science, Assessment & Learning

- Dawson, P. (2023). Defending assessment validity in the age of AI.
<https://doi.org/10.4324/9781003433248-7>
- Langer, E. (1997). The power of mindful learning. Addison-Wesley.
<https://www.penguinrandomhouse.com/books/100323/the-power-of-mindful-learning-by-ellen-j-langer/>
- Selwyn, N. (2022). Education and technology (2nd ed.).
 Bloomsbury.<https://www.bloomsbury.com/us/education-and-technology-9781350181200/>
- Shavelson, R. (2010). Measuring college learning responsibly. Stanford University Press.
<https://www.sup.org/books/title/?id=18054>
- Zou, Y., Kuek, F., Feng, W., & Cheng, X. (2025). Digital learning in the 21st century: Trends, challenges, and innovations. *Frontiers in Education*.

<https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2025.1562391/full>

V. AI and Inequality in Education (Empirical & Policy)

- Holt, R. (2025). Bridging the digital divide: AI and educational inequality. ResearchGate. [https://www.researchgate.net/publication/396974507 Bridging the Digital Divide AI and Educational Inequality](https://www.researchgate.net/publication/396974507_Bridging_the_Digital_Divide_AI_and_Educational_Inequality)
- Sevilla, A., et al. (2025). Computer-assisted learning and AI-guided tutors. <https://link.springer.com/article/10.1007/s40797-025-00354-1>
- Wang, S., et al. (2024). Artificial intelligence in education: A systematic literature review. <https://www.sciencedirect.com/science/article/pii/S0957417424010339>
- Vieriu, A. M., & Petrea, G. (2025). The impact of AI on students' academic development. Education Sciences. <https://www.mdpi.com/2227-7102/15/3/343>
- Fu, Y., et al. (2024). Navigating the ethical terrain of AI in education. <https://www.sciencedirect.com/science/article/pii/S2666920X24001097>
- OECD. (2024). The potential impact of artificial intelligence on equity and inclusion in education. https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/08/the-potential-impact-of-artificial-intelligence-on-equity-and-inclusion-in-education_0d7e9e00/15df715b-en.pdf
- Ruano-Borbalán, J. C. (2025). The transformative impact of AI on higher education. <https://journals.sagepub.com/doi/10.1177/2212585X251319364>
- Rasheed, H., Bashir, R., Hanif, M., & Gul, S. (2025). Leveraging AI to mitigate educational inequality. Critical Review of Social Sciences Studies. [https://www.researchgate.net/publication/389368960 Leveraging AI to Mitigate Educational Inequality](https://www.researchgate.net/publication/389368960_Leveraging_AI_to_Mitigate_Educational_Inequality)
- Trošelj, D. B., Maričić, S., & Ćurić, A. (2024). Growing interest in AI in education: Systematic literature review. ERIC <https://files.eric.ed.gov/fulltext/ED673118.pdf>

VI. Neurotechnology & Human Autonomy

- Farahany, N. (2023). The battle for your brain: Defending the right to think freely in the age of neurotechnology. St. Martin's Press. <https://us.macmillan.com/books/9781250871022/thebattleforyourbrain>

VII. Meritocracy & Knowledge Hierarchies

- Sandel, M. J. (2020). The tyranny of merit: What's become of the common good? Farrar, Straus and Giroux. <https://us.macmillan.com/books/9780374289980/thetyrannyofmerit>
- Farah, M. J. (2021). The problem with meritocratic education. Journal of Social Issues, 77(2), 397–410